

		Foundation			Year 1			Year 2	Year 3		Year 4		Year 5	
		Step 1	Step 2	Step 3	Step 4	Step 5	Step 6	Step 7	Step 8	Step 9	Step 10	Step 11	Step 12	Step 13
	Addition (Teach in conjunction with subtraction)	Recognises 'more' and 'less' in appropriate contexts (eg, The Three Bears)	Offers solution to simple action stories when modelled by teacher, involving join and takeaway in the range 1 - 5 using concrete materials and language and 'make-all/countall' (count by ones) strategy	Uses concrete materials to model and solve addition action stories (1-10) involving join or combine using 'make all / count all' or counting on from known ('trusted') number	Uses concrete materials where some items are concealed to solve addition problems to 20 using counting on strategies or part-part-whole knowledge Poses and solves simple addition problems	Uses count on from larger (add 1, 2 or 3) or part-part-whole knowledge to mentally add small collections to one and two digit numbers	Uses doubles and near doubles strategy and part-part-whole knowledge to mentally add 1 and 2-digit numbers (eg, 8 and 9,15 and 16) Use formal notation to record equations	Uses make-toten strategy to mentally add single digit numbers and beyond (eg, 8 and 6, 18 and 6) Solves 2 digit addition problems with support , eg model $28+36$ using MAB, 10 frames or Open Number Lines	Uses number fact knowledge and renaming (grouping) to record solutions to problems involving 2 digit numbers Uses number fact knowledge to solve single digit, multiple addend problems	Uses number fact knowledge and renaming to record solutions to problems involving 3 digit numbers May use MAB initially Uses place-value strategies such as skip and jump and renaming to mentally solve 2 digit addition problems	Uses number fact knowledge and renaming (grouping) to record solutions to problems involving 4 digit numbers Solves problems involving multiple addends	Uses rounding strategies and/or renaming and number fact knowledge to estimate answers to addition problems (tenths to thousands)	Uses number fact knowledge to record solutions to addition problems (tenths to hundreds of thousands)	Uses strategies as appropriate to solve an extended range of addition and subtraction problems involving large whole numbers and decimal
	Subtraction			Uses concrete materials to model and solve simple subtraction action stories (1-10) using a make-all/count-all' strategy ie items are removed from a known collection and a new total is determined by counting the remainder.	Uses concrete materials to solve simple subtraction problems (take 1,2 or 3) or use materials to solve missing addend (5 and something makes 8) problems using 'make-all/countall' strategy	Solves and poses 'difference' problems (1-10) using counting back (1, 2 or 3) from known or part-part-whole knowledge i.e. Solve missing addend problems (numbers to 10) mentally	Uses count on from (think of addition) strategy to solve difference problems involving numbers to 20 eg understand 13-11 is the same as saying $11+\square=13$ Use formal notation to record equations	Uses make-back-to-ten, halving and/or place-value-based strategies to mentally subtract single digit numbers from 1 and 2-digit numbers Solves 2 digit subtraction problems with support (eg, MAB and Open Number Lines)	Uses number fact knowledge and renaming (trading) to record solutions to subtraction problems involving 2 digit numbers May use MAB initially	Uses number fact knowledge and renaming to record solutions to subtraction problems involving 3 digit numbers May use MAB initially Uses place-value strategies such as skip and jump and renaming to mentally solve 2 digit subtraction problems	Uses number fact knowledge and renaming to record solutions to subtraction problems involving 4 digit numbers May use Number Expanders initially	Uses rounding strategies and/or renaming and number fact knowledge to estimate answers to subtraction problems (tenths to thousands)	Uses number fact knowledge to record solutions to addition problems (tenths to hundreds of thousands)	Uses fraction renaming strategies to record solutions to addition and subtraction problems involving unlike proper and mixed fractions
	Multiplication (Teach in conjunction with division)	Structured and supported spatial patterning or sharing games and activities as well as rhythmic songs or rhymes will help to build this concept.		Makes and distributes small equal groups with support (eg, 2 paste bottles per table, 6 crayons per table)	Can determine total number of elements in a collection of grouped items, but counts grouped items by 1 s without any reference to group structure (ie, uses make-all/count-all strategy)	Efficient counting using 'easy' composite units ($2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s) Elements of group still need to be modelled (e.g. counters)	Uses arrays to make, model and explore equal groups (rows or columns) and totals. Group structure still needs to be modelled e.g. Cuisenaire rods	Makes and names equal groups via sharing (eg, 24 shared among 3, 3 eights) Uses consistent language, eg 2 fours, 3 sixes ...	Builds on from known to count arrays and regions more efficiently (eg, for 6 fours, uses 3 fours and doubles the total).Turns arrays to show commutativity	Uses formal notation Uses patterns and/or place-value strategies to determine x5 and $x 9$ facts and commutative property for 5x and $9 x$ facts.	Uses the area idea, extended number fact knowledge, and renaming to record solutions to 2-digit by 1-digit problems Represents and solves simple Combinations problems	Recalls multiplication and complimentary division facts Uses place-value based strategies (rounding) to estimate or mentally calculate solutions to 2 digit by 1 digit multiplication problems	Uses extended number fact knowledge and renaming to record solutions to 2 digit by 2 digit multiplication problems May use MAB initially	Uses rounding toestimate solutions to 2digit ty 2 digitmultiplicationproblemsUses strategies asappropriate to solvean extended range ofproblems (eg,involving ratio, rate,larger whole numbersand decimals tohundredths)
	Mental Strategies			Use group structure and stress or rhythmic counting to determine total Identifies x10 pattern		Uses doubles strategy for x2	(May need to use 'double count' to determine total with fingers standing for groups)	Uses doubles and 1 more group strategy for $\times 3$ facts and commutative property for 3x facts	Uses double doubles strategy for x4 facts and commutative property for 4 x facts Uses x10 and halve strategy for x5	Uses strategies as appropriate for remaining facts (see NTCF Band 2 Calculating for details)				
	Division			Shares collections equally in supported play activity	Shares (approximately) equally by using structured 1:1 correspondence to make groups	Shares small collections without support and shares large collections more efficiently (eg, dealing out 3 cards at a time)	Recognises remainders as a consequence of not being able to share physical collections equally (eg, 24 shared among 7)	Recognises partitioning can be used to assign remainders (eg, 9 pikelets shared among 4 is 2 and 1 quarter per share)	Uses bundling materials and MAB to solve sharing problems involving 2 digit numbers and 1 digit divisors	Uses think of multipl ication strategy for division facts (eg, 36 divided by 4 , think 4 whats are 36?) Uses formal notation	Uses sharing and MAB to solve and record division problems involving 2 and 3 digit numbers and 1 digit divisors	Uses think of multiplication strategy to mentally solve problems involving 2 and 3 digit numbers and 1 digit divisors	Uses number fact knowledge and renaming to record solutions division problems May use MAB initially	Estimates and solves a range of division problems using strategies as appropriate

Prepared by Dianne Siemon (RMIT) and John Bradbury (NT DET) for Shepherdson College, Galiwin'ku - 7 May 2009 - Last updated 15 September 2021

